99 research outputs found

    A randomized neural network for data streams

    Get PDF
    © 2017 IEEE. Randomized neural network (RNN) is a highly feasible solution in the era of big data because it offers a simple and fast working principle in processing dynamic and evolving data streams. This paper proposes a novel RNN, namely recurrent type-2 random vector functional link network (RT2McRVFLN), which provides a highly scalable solution for data streams in a strictly online and integrated framework. It is built upon the psychologically inspired concept of metacognitive learning, which covers three basic components of human learning: what-to-learn, how-to-learn, and when-to-learn. The what-to-learn selects important samples on the fly with the use of online active learning scenario, which renders our algorithm an online semi-supervised algorithm. The how-to-learn process combines an open structure of evolving concept and a randomized learning algorithm of random vector functional link network (RVFLN). The efficacy of the RT2McRVFLN has been numerically validated through two real-world case studies and comparisons with its counterparts, which arrive at a conclusive finding that our algorithm delivers a tradeoff between accuracy and simplicity

    Improved Quantification of Important Beer Quality Parameters based on Non-linear Calibration Methods applied to FT-MIR Spectra

    Get PDF
    During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications already at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e. samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with non-linear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods , like partial least squares (PLS), for important quality parameters [1][2] such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation or foam stability. The calibration models are established with enhanced non-linear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (Δ-PLSSVR and Μ-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, as showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company

    Calibration Model Maintenance in Melamine Resin Production: Integrating Drift Detection, Smart Sample Selection and Model Adaptation

    Get PDF
    The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect hanges in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling’s T2T^2 and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling’s T2T^2 and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space

    An Online RFID Localization in the Manufacturing Shopfloor

    Full text link
    {Radio Frequency Identification technology has gained popularity for cheap and easy deployment. In the realm of manufacturing shopfloor, it can be used to track the location of manufacturing objects to achieve better efficiency. The underlying challenge of localization lies in the non-stationary characteristics of manufacturing shopfloor which calls for an adaptive life-long learning strategy in order to arrive at accurate localization results. This paper presents an evolving model based on a novel evolving intelligent system, namely evolving Type-2 Quantum Fuzzy Neural Network (eT2QFNN), which features an interval type-2 quantum fuzzy set with uncertain jump positions. The quantum fuzzy set possesses a graded membership degree which enables better identification of overlaps between classes. The eT2QFNN works fully in the evolving mode where all parameters including the number of rules are automatically adjusted and generated on the fly. The parameter adjustment scenario relies on decoupled extended Kalman filter method. Our numerical study shows that eT2QFNN is able to deliver comparable accuracy compared to state-of-the-art algorithms

    Scaffolding type-2 classifier for incremental learning under concept drifts

    Full text link
    © 2016 Elsevier B.V. The proposal of a meta-cognitive learning machine that embodies the three pillars of human learning: what-to-learn, how-to-learn, and when-to-learn, has enriched the landscape of evolving systems. The majority of meta-cognitive learning machines in the literature have not, however, characterized a plug-and-play working principle, and thus require supplementary learning modules to be pre-or post-processed. In addition, they still rely on the type-1 neuron, which has problems of uncertainty. This paper proposes the Scaffolding Type-2 Classifier (ST2Class). ST2Class is a novel meta-cognitive scaffolding classifier that operates completely in local and incremental learning modes. It is built upon a multivariable interval type-2 Fuzzy Neural Network (FNN) which is driven by multivariate Gaussian function in the hidden layer and the non-linear wavelet polynomial in the output layer. The what-to-learn module is created by virtue of a novel active learning scenario termed the uncertainty measure; the how-to-learn module is based on the renowned Schema and Scaffolding theories; and the when-to-learn module uses a standard sample reserved strategy. The viability of ST2Class is numerically benchmarked against state-of-the-art classifiers in 12 data streams, and is statistically validated by thorough statistical tests, in which it achieves high accuracy while retaining low complexity

    Visual analytics for collaborative human-machine confidence in human-centric active learning tasks

    Get PDF
    Active machine learning is a human-centric paradigm that leverages a small labelled dataset to build an initial weak classifier, that can then be improved over time through human-machine collaboration. As new unlabelled samples are observed, the machine can either provide a prediction, or query a human ‘oracle’ when the machine is not confident in its prediction. Of course, just as the machine may lack confidence, the same can also be true of a human ‘oracle’: humans are not all-knowing, untiring oracles. A human’s ability to provide an accurate and confident response will often vary between queries, according to the duration of the current interaction, their level of engagement with the system, and the difficulty of the labelling task. This poses an important question of how uncertainty can be expressed and accounted for in a human-machine collaboration. In short, how can we facilitate a mutually-transparent collaboration between two uncertain actors - a person and a machine - that leads to an improved outcome?In this work, we demonstrate the benefit of human-machine collaboration within the process of active learning, where limited data samples are available or where labelling costs are high. To achieve this, we developed a visual analytics tool for active learning that promotes transparency, inspection, understanding and trust, of the learning process through human-machine collaboration. Fundamental to the notion of confidence, both parties can report their level of confidence during active learning tasks using the tool, such that this can be used to inform learning. Human confidence of labels can be accounted for by the machine, the machine can query for samples based on confidence measures, and the machine can report confidence of current predictions to the human, to further the trust and transparency between the collaborative parties. In particular, we find that this can improve the robustness of the classifier when incorrect sample labels are provided, due to unconfidence or fatigue. Reported confidences can also better inform human-machine sample selection in collaborative sampling. Our experimentation compares the impact of different selection strategies for acquiring samples: machine-driven, human-driven, and collaborative selection. We demonstrate how a collaborative approach can improve trust in the model robustness, achieving high accuracy and low user correction, with only limited data sample selections

    AnyNovel: detection of novel concepts in evolving data streams: An application for activity recognition

    Get PDF
    A data stream is a flow of unbounded data that arrives continuously at high speed. In a dynamic streaming environment, the data changes over the time while stream evolves. The evolving nature of data causes essentially the appearance of new concepts. This novel concept could be abnormal such as fraud, network intrusion, or a sudden fall. It could also be a new normal concept that the system has not seen/trained on before. In this paper we propose, develop, and evaluate a technique for concept evolution in evolving data streams. The novel approach continuously monitors the movement of the streaming data to detect any emerging changes. The technique is capable of detecting the emergence of any novel concepts whether they are normal or abnormal. It also applies a continuous and active learning for assimilating the detected concepts in real time. We evaluate our approach on activity recognition domain as an application of evolving data streams. The study of the novel technique on benchmarked datasets showed its efficiency in detecting new concepts and continuous adaptation with low computational cost

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems
    • 

    corecore